Activité 1

$$c) -12$$

Activité 2

a)
$$0.1 + \frac{8}{15} = \frac{1}{10} + \frac{8}{15} = \frac{3}{30} + \frac{16}{30} = \frac{19}{30}$$

b)
$$\frac{7}{5} - \frac{11}{24} : \frac{5}{18} = \frac{7}{5} - \frac{11}{24} : \frac{\cancel{18}}{5} = \frac{7}{5} - \frac{33}{20} = \frac{28}{20} - \frac{33}{20} = -\frac{5}{20} = -\frac{1}{4}$$

Activité 3
$$2.31 \cdot 10^8 \cdot 3 \cdot 10^{-3} = 2.31 \cdot 3 \cdot 10^8 \cdot 10^{-3} = 6.93 \cdot 10^5$$

Activité 4

a)
$$20x - xy - 10x + 2y - 6y = -xy + 10x - 4y$$

b)
$$X \cdot X - X \cdot X^2 + X^2 + X^3 = X^2 - X^3 + X^2 + X^3 = 2x^2$$

c)
$$(4x-7)(11x+5) = 44x^2 + 20x - 77x - 35 = 44x^2 - 57x - 35$$

d)
$$(y^2 - 4) - (7y^2 - 5) = y^2 - 4 - 7y^2 + 5 = -6y^2 + 1$$

Activité 5

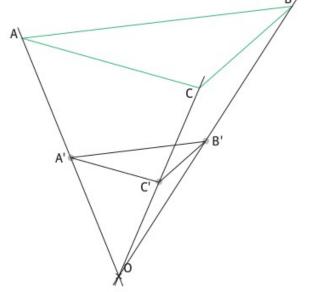
$$2(41 - 10x) = x - 2$$
 CL
 $82 - 20x = x - 2$ + $20x + 2$
 $84 = 21x$: 21

$$84 = 21x$$
$$x = 4$$

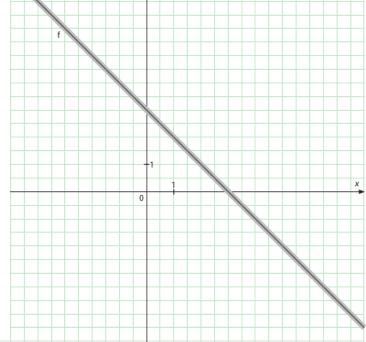
Activité 6

$$\begin{cases} 2x - y = 24 & | \cdot 1 \\ -3x + y = -40 & | \cdot 1 \end{cases}$$

$$\begin{cases} -x = -16 \\ x = 16 \end{cases}$$


$$\begin{cases} 6x - 3y = 72 \\ -6x + 2y = -80 \end{cases}$$

$$\begin{cases} -y = -8 \\ y = 8 \end{cases}$$


Activité 7

b)
$$g(x) := 2x - 4$$

Activité 8

 $S = \{(16; 8)\}$

Page 2

Page 3

Le triangle ABO est isocèle en O car AO = OB = rayon du cercle c.

Comme le triangle ABO est isocèle, on a \widehat{OAB} = 35°.

Somme des angles dans le triangle ABO : $180 - 35 - 35 = 110 \text{ d'où } \widehat{AOB} = 110^{\circ}$

En appliquant le théorème de l'angle inscrit à \widehat{AOB} et \widehat{ACB} , on obtient \widehat{ACB} = 110 : 2 = 55°.

Angle BCD plat : 180 - 55 = 125 d'où \widehat{ACD} = 125° Triangle ACD isocèle : \widehat{ADC} = (180 - 125) : 2 = 27,5

ADC = 27,5°

La piscine

Les trois dimensions réelles en cm sont:

 $11,5 \cdot 200 = 2300$

 $7 \cdot 200 = 1400$

 $2,5 \cdot 200 = 500$

ou en utilisant un tableau de proportionnalité:

Dimensions sur le plan (en cm)	11,5	7	2,5	200
Dimensions réelles (en cm)	2300	1400	500	. 200

Aire du rectangle (en m^2): $23 \cdot 14 = 322$

Aire du disque (en m²): $2,5^2 \cdot \pi = 6,25 \pi \ (\cong 19,63)$

Aire de la base (en m²): $322 - 6,25 \pi \approx 302,37$

Volume d'eau en m³: Aire de la base · 1,8 ≅ 544,26

ou en calculant directement des volumes :

Volume du parallélépipède rectangle «piscine» (en m³) : 14 · 23 · 1,8 = 579,6

Volume du cylindre en béton (en m³) : $2.5^2 \cdot \pi \cdot 1.8 = 11.25 \pi \approx 35.34$

Volume d'eau (en m³) : 579,6 – 11,25 $\pi \cong$ 544,26

Trapèze rectangle

5 pts

- a) Aire du trapèze = $\left(\frac{5x + x}{2}\right) \cdot x = 3x^2$ ou Aire trapèze = Aire du carré + Aire du triangle rectangle = $x^2 + (4x \cdot x) : 2 = x^2 + 2x^2 = 3x^2$
- b) Utiliser le calque annexé pour corriger le graphe de la fonction.

Pour information, voici l'aire du trapèze en fonction de x :

Х	0	0,5	1	1,5	2	2,5
Aire du trapèze	0	0,75	3	6,75	12	18,75

Page 4

Page 5

a) Pour déterminer si le triangle ABC est rectangle, il faut utiliser la réciproque du théorème de Pythagore.

$$AB^2 = 3^2 = 9$$

$$BC^2 + AC^2 = 2,4^2 + 1,8^2 = 5,76 + 3,24 = 9$$

On a $AB^2 = BC^2 + AC^2$.

Donc, d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en C.

Oui, le plancher BC est perpendiculaire au mur AC.

b)
$$DE^2 = AD^2 - AE^2 = 2^2 - 1,2^2 = 4 - 1,44 = 2,56$$

d'où DE =
$$\sqrt{2,56}$$
 = **1,6 m**

Si l'élève a démontré le a), il est possible d'utiliser le théorème de Thalès avec les triangles ABC et ADE :

$$\frac{2,4}{DE} = \frac{1,8}{1,2}$$

$$DE = \frac{2,4 \cdot 1,2}{1,8} = \frac{2,88}{1,8} = 1,6$$

La course

En trente minutes, le bus a parcouru 20 km.

Temps de course de Julie en h : 20 : 9 = $2,\overline{2}$

Temps de course de Julie en h, min et sec : 2h 13 min 20 sec

Heure de retour devant l'immeuble : 20h 3min 20sec

L'entreprise

En posant x = salaire de la secrétaire, on a

salaire de la directrice = 2x et salaire d'un employé = x + 1150.

$$x + 9(x + 1150) + 2x = 66042$$
 | CL

$$x + 9x + 10350 + 2x = 66042$$
 - 10350

$$12x = 55692$$
 : 12

x = 4641

salaire d'un employé Fr. 5791.-

salaire de la secrétaire Fr. 4641.-

salaire de la directrice Fr. 9282.-

Page 6

Page 7

Page 8

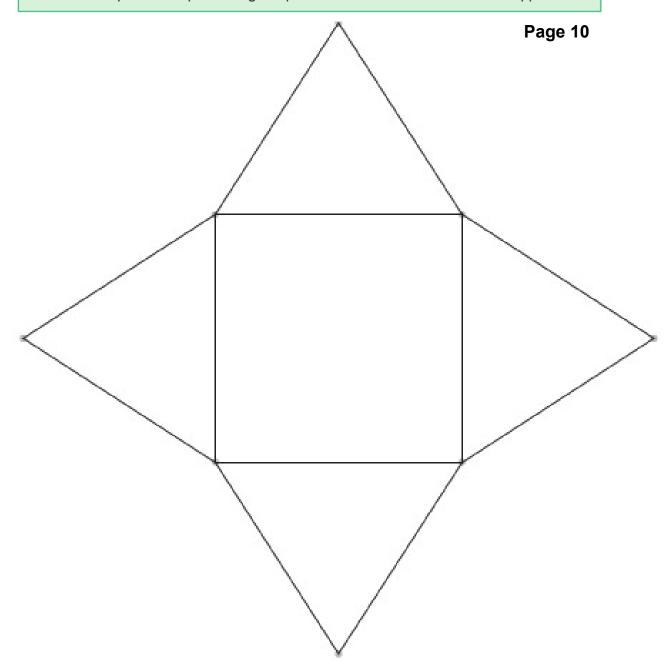
La livraison

2,3 m = 23 dm et 0,89 m = 8,9 dm

Volume du cylindre (en dm³): $\pi \cdot 8,9^2 \cdot 23 \cong 5723,45$ Volume à remplir (en dm³): $V_{cylindre} \cdot 0,85 \cong 4864,93$ Durée de remplissage (en s): $V_{a remplir}$: $3 \cong 1621,64$

(Durée de remplissage): 60 ≅ 27,03

27 min


Page 9

Hôtel 6 pts

Mesures sur le développement à l'échelle 1 : 2800

en m: 182 : 2800 = 0,065 en cm: 18200 : 2800 = 6,5 en m: 168 : 2800 = 0,06 en cm: 16800 : 2800 = 6

Utiliser le calque annexé pour corriger la précision de la construction du développement.

